Version 21 (modified by celine, 14 years ago) (diff) |
---|
back to first page ..
back to River width computation
Other model :
- Elvira model : model 4 with river >2nd order
Log10(Wet width + 1) = 0.22734+ 0.20045 (log10 catchment area) + 0.25939 (log 10 Shreve index)
- Thornton model : W = 4.98 CA0.47
Models tested:
Linear regression
- Model 1 : width ~ a*catchment_area + b
- Model 2 : log(width) ~ a*log(up_area)+ b
- Model 3 : log(width) ~ a*log(up_area) + uga + b
- Model 4 : log(width) ~ a*log(up_area) + b*log(shreve index) + c
- Model 5 : log(width) ~ a*log(up_area) + b*log(shreve index) + uga + c
Non linear regression with library(nlme)
- Model 1: width~alpha*up_areabeta
- Model 2 : width~gamma*shrevelambda (à tester : width~gamma*strahlerlambda
- Data extraction :
- year > 1987 (RHP)
- Period : april-october
- complete sampling method
- shreve >1
Model Validation for linear regression
- Residuals versus fitted values to verify homogeneity
- QQ-plot or histogrqam of the residuals for normality
- Residuals versus each explanatory variable to check independence
Up cathcment area ~stream order
![]() | ![]() |
Up catchment area ~ shreve | Up catchment area ~ strahler |
Width ~stream order
![]() | ![]() |
River width ~ shreve | River width ~ strahler |