back to first page[..][[BR]] = Some explanation = ------------------- work as Distance*Elevation Crossin et al. 2004 or something more ? Van Ginneken et al. (2008) estimate a cost of transport (COT)in kj.kg-1.km-1 do the amount of energy will be proportional to the distance covered by silver eel. It makes sense to say that the energy expenditure is relative to the distance covered (E1) ----------------------- Après avoir regardé la publi indiquée par Laurent, il semble que l'hypothèse que l'énergie soit relative à la distance est juste Wheis, 1978 [[BR]] Work for constant speed energy [[BR]] Thrust equal to hydrodynamic resistance R [[BR]] R=a/2*Af*Cd*V^2 [[BR]] a density of the water [[BR]] With Af=frontal area [[BR]] Cd=drag coefficient [[BR]] V relative velocity between the water and the fish [[BR]] Total work=R*D where D is the distance covered [[BR]] The total energy requirement inclusdes in addition to the energy expenditure the maintenance of bodily functions =standard resting metabolic rate [[BR]] Esm=M*t [[BR]] where M is the standard resting metabolic rate and t is time [[BR]] total work=propulsive eneregy + standard metabolic rate energy= Epe+ Esm= [[BR]] R*D +Mt=R*D+M*D/V [[BR]] =a/2*Af*Cd*V*V*D+M*D/V [[BR]] on retrouve bien pour une vitesse relative constante une grandeur relative à la distance parcourue -------------------- The additional distance linked to altitude (water current) is relative to Vitesse d'écoulement : vitesse instantanée: u = dx/dt vitesse moyenne : V Dans un chenal, relation empirique de Chezy: V= C (h S)1/2 C : coefficient de friction de Chezy h : profondeur S : pente The additional energy (E2)due to slope is related to the current distance additional=v*t ~c(hS)1/2*t ~alpha t (E/D)1/2 with alpha a multiplying coeff depending on depth, C t is proportional to the distance so E2= beta(DE)1/2 Energy=D+sqrt(DE) which is correct for dimensions (m) Energy ~ distance ~ mgh (potential energy)