| 11 | ______________________ |
| 12 | Après avoir regardé la publi indiquée par Laurent, il semble que l'hypothèse que l'énergie soit relative à la distance est juste |
| 13 | |
| 14 | WHeis, 1978 |
| 15 | Work for constant speed energy |
| 16 | Thrust equal to hydrodynamic resistance R |
| 17 | R=a/2*Af*Cd*V |
| 18 | a density of the water |
| 19 | With Af=frontal area |
| 20 | Cd=drag coefficient |
| 21 | V relative velocity between the water and the fish |
| 22 | Total work=R*D where D is the distance covered |
| 23 | The total energy requirement inclusdes in addition to the energy expenditure the maintenance of bodily functions |
| 24 | =standard resting metabolic rate |
| 25 | Esm=M*t |
| 26 | where M is the standard resting metabolic rate |
| 27 | and |
| 28 | t is time |
| 29 | |
| 30 | total work=propulsive eneregy + standard metabolic rate energy= |
| 31 | Epe+ Esm=R*D +Mt=R*D+M*D/V |
| 32 | =a/2*Af*Cd*V*D+M*D/V on retrouve bien pour une vitesse relative constante une grandeur relative à la distance parcourue |
| 33 | ___________________________________ |